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Abstract--The problem of turbulent heat or mass transfer from a solid boundary is treated by dividing 
the turbulent flow into two regions. For the region in the immediate vicinity of the wall one uses a physical 
model proposed previously by the author. In the model one considers the turbulent motion as a succession 
along the wall of quasi-steady laminar motions each of them having a short path. Compared to the preceding 
treatment, in the present one takes into account various forms of dependence of the shear stress on the 
distance y to the wall. For a constant shear stress the case of the turbulent motion in a pipe is obtained, 
while for a shear stress proportional to y that of turbulent separated flows near the separation point. 
For the fully turbulent region, Prandtl’s equation for the turbulent kinetic energy is used and on its basis one 
obtains an equation for the turbulent diffusion coefficient and for the mass transfer flux. The equation 
for the turbulent kinetic energy has allowed to propose a procedure for obtaining isolation concerning 
the Iength x0 of the laminar path. The main conclusion is E:at the form of dependence of the shear stress 
on the distance from the wall has a great influence on the manner in which the mass transfer coefficient 

depends on the diffusion coefficient, viscosity and fluid viscosity. 

~O~~CLATU~ 

universal constant ; 
quantity defined by equation (25); 
universal constant ; 
quantity defined by equation (38); 
concentration ; 
concentration at the interface ; 
concentration for y = y. ; 
concentration in the bulk of the 
fluid ; 
pipe diameter ; 
diffusion coefficient ; 
universal constants ; 
kinetic turbulent energy, equation 
(27) ; 
value of E for y = y, ; 
friction factor ; 
universal constant, equation (46); 
mass-transfer coefficient ; 
exponent ; 
mass flux; 
average value of N over the laminar 
path of length x0 ; 

R 
u, 
U mr 

u, 

UI, 

f 
0, 

I 
w, 

pressure ; 
x component of velocity; 
average velocity in a tube; 
velocity at infinite of a fluid moving 
around a sphere or cylinder; 
x component of velocity fluctua- 
tion ; 
y component of velocity fluctua- 
tion ; 
z component of velocity fluctua- 
tion ; 

(Ur)2, {~,(~, temporal average of (u’)‘, 
(v’)’ and (w’)’ ; 

& distance along the wall ; 

x0* the length of a laminar path ; 

Y* distance from the wall; 

Yo, thickness of the layer from the 
immediate vicinity of the wall ; 

Yl, distance at which c NN c, ; 

4 quantity defined by equations (3) 

or (4) ; 
/% proportionality constant taken 

equalto3+n; 
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r, 
4 

gamma function ; 
length in the similarity variable ,u, 
equation (A.l); and given by (A.4) ; 
turbulent diffusion coefficient ; 
dynamic viscosity ; 
similarity variable, defined by equa- 
tion (A.l) and given by equation 

(11); 
kinematic viscosity ; 
shear stress ; 
value of z at the wall ; 
fluid density ; 
%ll4v ; 
v/D. 

INTRODUCTION 

SOME years ago a physical model was developed 
by the author for representing the turbulent 
heat or mass transfer near a solid boundary for 
large Schmidt or Prandtl numbers [l, 23. 
Owing to some assumptions, that treatment is 
however valid only if the shear stress near the 
boundary is practically independent of the 
distance y from the solid surface, condition ful- 
filled, for instance, for the flow in a tube. The 
model was extended recently to turbulent 
separated flows [S]. In these cases the shear 
stress near the solid boundary is no longer 
independent of y. Spalding’s paper [4] con- 
cerning the heat transfer from turbulent sepa- 
rated flows has stimulated us to look for a more 
unitary analysis of the cases treated in [l] and 
[3], and has also provided means for solving the 
problem for a larger range of Schmidt or 
Prandtl numbers. It is the aim of the present 
paper to present the more general approach of 
the turbulent heat or mass transfer from a solid 
boundary for a large range of Schmidt or 
Prandtl numbers. In the analysis, the turbulent 
flow near a solid wall will be divided into two 
regions. One of them in the immediate vicinity 
of the wall in which the molecular diffusion 
coefficient and the molecular viscosity are acting 
and the other one, the fully turbulent region, in 

which the effect of the molecular physical 
quantities is negligible. For the region in the 
immediate vicinity of the wall the author’s 
physical model will be used, while for the fully 
turbulent region the equation written by Prandtl 
[S] for the turbulent kinetic energy and applied 
by Spalding to turbulent separated flows [4]. 
Compared to the previous models [l, 33, the 
present one leads to a more general method 
owing both to ‘the manner in which one takes 
into account the dependence of the shear stress 
on the distance to the wall and to the manner 
in which equations are established for some 
hydrodynamic quantities introduced by the 
model. The use of Prandtl’s equation for the 
turbulent kinetic energy in the fully turbulent 
region permits to obtain equations for the mass 
or heat-transfer coefficient valid for a large 
range of Schmidt or Prandtl numbers. 

THE REGION IN THE IMMEDIATE VICINITY OF 
THE WALL 

In the immediate vicinity of the wall it will be 
considered that the turbulent motion is com- 
posed of a succession of laminar motions along 
the wall, each of them having a short path of 
length x0 [l, 21. Owing to turbulent fluctuations, 
elements of liquid brought to the wall, are 
moving along the wall in short paths of length x0 
and are dissolving into the bulk of the fluid, 
being replaced by other elements of fluid and 
so on. Arguments in support of this model based 
especially on visual observations, but also on an 
analysis of the turbulent diffusion coefficient 
concept [6], were adduced in previous papers 
and will not be repeated here. The equations of 
motion and the convective diffusion equation 
valid for each path are those for the corres- 
ponding quasi-steady laminar motion. For 
simplicity a one-dimensional distribution will 
be taken for the velocity field in each path. This 
field will be obtained from the equation 

‘=‘lG 
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For the turbulent motion in a tube 

r x r. = constant (2) 

near the wall, while for turbulent separated 
flows the shear stress is small at the wall near 
the separation point (being nil at this point) and 
depends on the distance y from the wall. In the 
last case it is possible to write 

z = z. + ya. (3) 

The validity conditions of (3) are discussed by 
Townsend [7]. The quantity a may be taken 
approximately equal to dP/dx. The shear stress 
r. at the wall is positive before the separation 
point and negative behind the separation point. 
In what follows, for simplicity, only the process 
taking place in a region very near to the separa- 
tion point where z. x 0 will be considered. 

Owing to the fact that the cases in which z has 
the form 

z = af (4) 

may be solved easily and to the fact that (4) 
includes both the case of a tube (n = 0) and that 
of separated flows at the separation point 
(n = l), the treatment will be based on it. 

Introducing (4) into (1) and integrating one 
gets 

U= q(l +?I) 
a yl+1: 

The convective diffusion equation valid in each 
path takes the form 

If the assumption is made that the thickness of 
the fluid elements moving along the wall (and 
in contact with it) a distance equal to x0 is larger 
than the depths of penetration by diffusion for 
all values of x < x0, one may approximate the 
distribution of concentration by the one valid 
for a semi-infinite fluid. Consequently equation 
(6) must be solved for the boundary conditions 

c = ci for y = 0 (7) 

c = co for x = 0 (8) 

c = co for y + co. (9) 

The solution of equation (6) for the boundary 
conditions (7)(9) has the form (see appendix) 

c _ c. 
1 

[expW”+3Ws 

- 
CO - Ci 

where 

cc = --- 
Y 

( 

--y---r. (11) 

(n + 3): + 1) rl Z(Dx)“t’ 
J 

For the mass flux one obtains 

NC-D c 0 D(Ci - CO) 
ay y=rJ = 

( 
I 1 

x cn + 3)‘0;n + I)‘1 n+3(Dx) n+3 )- 
-~ 

(12) 

and for the average mass flux defined over the 
path of length x0 

n+Z 

n+3 DX(Ci-cg) 
NC- 

n+2 

( J 
1 1 _ -_ 

x (n + 3)2qn + Qrl n+3 xo”+3. (13) 

The length x0 of the path being short one may 
consider N as a quasi-local quantity. 

For large values of Schmidt number the 
concentration co is practically equal to that of 
the bulk and for the mass-transfer coefficient, I 

defined by 

k = N/(c, - c,), (14) 

one obtains 
n+2 

. n+3 Dn+3 
k=- 

n+2 

x (n + 3)20;n + 1) tt ( > 
1 I 

iiT? 
-- 

xo “+ 3. (15) 
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The transfer coefficient may be also considered 
a quasi-local quantity. 

The length x,, of the laminar path may be 
obtained by means of dimensional considera- 
tions. For a tube one considers that the state 
of turbulence near the boundary is characterized 
by r,,, p and q. Extending this type of reasoning 
to the present case one may say that the state of 
turbulence is characterized by a, p and rl: 
Dimensional considerations lead to 

a -;& _F 
xoa - 

0 

v n+2 
(16) 

rl 

Consequently 

n+2 

maOx a 

0 

I n+4 

P 

n+:-(n+z)(n+3) tci _ co) (17) 

and the mass-transfer coefficient for large 
Schmidt numbers is given by 

“+2a 
kaDni3- 

0 

k2 _ n+4 

v (n + Z)(n + 3) 
(18) 

P 

For n = 0, equation (18) leads to that obtained 
in [l], and for n = 1 to that obtained in [3]. 
One may stress the fact that a similar equation 
may be obtained by means of the turbulent 
diffusion coefficient concept if the procedure 
from [3] is used. 

The dimensional analysis has led to an equa- 
tion for x,, owing to the fact that the number of 
physical quantities implied is four (x,, a, p, n). 
Such considerations cannot lead however to 
information about the dependence of the 
proportionality constant from (16) on n, and to 
equations for x0 corresponding to more compli- 
cated relations between r and y, as is for instance 
that given by equation (3). A more satisfactory 
procedure for obtaining an equation for the 
length x0 of the laminar path is therefore needed. 
An analysis of the problem in terms of more 
fundamental (primary) quantities may be useful 
in this respect. The eddies having as a conse- 
quence the succession of short laminar motions 
along the wall are generated in the vicinity of 
the boundary between the two considered 

regions. The intensity of the eddies may be 
characterized by their kinetic energy E,, at this 
point. It is natural to consider that x0 depends on 
E, and on the physical constants Y) and p. 
Dimensional considerations permit us to write 

V 

x0 = el G (19) 

where e, is an universal constant. 
Though equation (19) was also deduced by 

dimensional reasoning, it is more general than 
(16) since it does not contain particular quan- 
tities specific to a certain case. It is however, 
necessary to express, for each situation, E. as a 
function of the corresponding particular quan- 
tities. It will be shown in the following section 
that for the fully turbulent region it is possible to 
establish a differential equation for the depend- 
ence of E on the distance y, equation in which the 
shear stress r appears too. For each type of 
dependence of z on y results a dependence of E 
on y. Since for the value of y at the boundary of 
the two regions dimensional considerations 
lead to 

Y,=$ 
0 

the above mentioned equation E = E(y) permits 
us to establish an equation for E,. 

For instance, for z = cry”, one obtains (see 
equation (32) from the following section) 

E= ah 
[eta - 3 bn2)]* 

y”. (21) 

Because 

E, = alp 

C4a -3bn 
2 ,I y” ) 0’ (22) 

using equation (20), one gets 

Consequently 

xo = el [e(u - 4 bn2)] zcr’r;;i ,A a -&I 
n 

(24) 

r; ” P . 
e2 

0 
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Compared to equation (16), equation (24) takes diffusion flux of turbulent energy and of the rate 
into account the dependence on the exponent of generation per unit volume of turbulent 
n too. energy. 

For the average mass flux taken over the 
laminar path of length x0, one obtains 

R= 
n+3 e, &3 [da - $ bn2)] -%I + 2fC + 3) 

n+2 _- 
[(n + l)(n + 3)‘y : 3e20( + 3fb + 2) 

Expressions for the rate of dissipation per unit 
volume and for the turbulent diffusion coefficient 
E are obtained by means of dimensional analysis : 

rate of dissipation per unit volume = y (28a) 

E = eE)y, (28b) 

a and e being universal constants. 
Since the rate of generation is given by 

r du/dy, while the variation of the diffusion tlux 
of the turbulent energy by bp d/dy (E*y G/dy) 
one gets 

L?l? 61 n+4 _ 
x Dn+3 - 0 

A2 

P 

v b + 2)ln + 3) x (q - co) 

1 II+2 _- 
E.j c” xL)r+3y 

(> 

n+4 

P 

f” + Z)(R + 3) (q - CJ, (25) 

where the dimensionless quantity A is a function 
of the exponent n. 

The mass-transfer coefficient at large Schmidt 
numbers is therefore given by 

(26) 

THE FULLY TURBULENT REGION 

The method of analysis which will be used in 
the following was developed by Prandtl [S] and 
was applied recently by Spalding [4] to turbu- 
lent separated flows. As in Spalding’s treatment, 
for the sake of simplicity, a one-dime~ional 
equation will be used for the description of 
turbulence in this region. This is a rough 
approximation for turbulent separated flows. 
Owing to the dependence of z. and o! on x, it 
must be described by at least a two-dimensional 
equation. The one dimensional approximation 
is probably satisfactory in a small zone near the 
separation point (where z. z 0 and tl is practic- 
ally constant). This is the only zone considered 
in the present paper. 

The main quantity appearing in Prandtl’s 
equation [SJ is the turbulent kinetic energy E 

E=*~+++t_ (27) 
An equation for E results by equating the rate 
of di~ipation per unit volume of the turbulent 
energy with the sum of the variation of the 

(29) 

Eliminating du/dy by means of the equation 

T du 
- = &*y- 
P dy 

(30) 

and using equation (4) for z/p it results 

aEt -- 
Y 

b$ (YE+ - -$$ = 0. (31) 

The solution of equation (31) which satisfies the 
boundary condition 

E-0 for y = 0 

has the form 

E alp 
= [da - 3 bn2)Jf y”. 

(32) 

~on~uently the turbulent diffusion coefficient 
is given by 

(33) 

For the mass flux in the fully turbulent region 
one may write 
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By integration one gets 

co - c??s 2[& - p?nq* 
-= 

N f&/P)* 

1 1 
x 71--IJ ( > for n # 0. 

Yo? Y12 
(35) 

Considering y, sufficiently large and n not too 
near to zero equation (35) becomes 

co - cln - = ; [e(a - 3 bn2)]* (a/p)-’ y,$. 
N 

(36) 

It must be stressed that equation (36) is not valid 
for turbulent flow in a pipe (n = 0). This case 
was examined previously 12, lo]. 

For the thickness y. of the region from the 
immediate vicinity of the wall, equation (20) 
together with the equation 

which results from (32), lead to 

YO = e2 
+& _ +hn2pGh ; -+ 

0 

(37) 

Consequently the mass flux in the fully turbulent 
region is given by the equation: 

(38) 

where the dimensionless qua&y B depends 
on n 

THE MASS-TRANSFER COEFFICIENT 

Equations (25) and (38) may be written under 
the form 

N= 
Ci - CO 

n+2 I n+4 
-n+3 --- 

~- 
fD 

0 

t n+2 v in+2)b+3) 

P 

The mass-transfer coefhcient is thus given by 

Equation (40) represents the main result of the 
present analysis. 

DlSCIJSSION 

Two equations have been established for the 
mass-transfer coefficient. One of them, equation 
(26), for large Schmidt numbers and the other 
one, equation (40), for a larger range of Schmidt 
numbers. The fact must be, however, stressed 
that the first equation is valid for any value of 
n > 0, while the second only for those values 
which are not near zero. The first comment 
which may be made with respect to the men- 
tioned equations is that the manner in which the 
shear stress depends on y has a great effect on 
the dependence of the mass-transfer coefficient 
on the diffusion coefficient, viscosity and velo- 
city. For large Schmidt nears 

for n = 0 (41) 

kccD*v-a b” 
0 

+ 
for n = 1. (42) 

P 
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Because for a pipe z,/p cc Re-“’ u& equation 
(41) leads to 

kccD*v-3Re-o’1u, forn=O. (43) 

Considering that in the vicinity of the separation 
point 

equation (42) becomes 

kccD+v-h U* for n = 1. (44) 

A comparison between equation (43) and 
(44) shows that the exponent of the d~sion 
coefficient is $ in the first case and 3 in the 
second and that the exponent of velocity is 0.9 
in the first case and 3 in the second. The experi- 
ments performed by Harriot and Hamilton [S] 
for the dissolving of the wall of a pipe into the 
turbulent liquid flowing inside the pipe and for a 
large range of Schmidt number (between 4 x 
lo2 up to 10’) lead to exponents very near to the 
ones obtained above 

k oc ~0.654 ~0.887 
(45) 

Richardson [9] studying the heat and mass 
transfer in turbulent separated flows has ob- 
tained experimentally a value of 3 for the 
exponent of velocity. The same exponent, linked 
however to the a~umption that dpjdx cc U2, 
appears in the present equation (44) too. Since 
for Q no detailed information exists, it is not yet 
possible to compare in more details the obtained 
equation with experiment. 

As concerns the equation (40), valid for a 
larger range of Prandtl number, it is of interest 
to note that for n = 1 the dependence on the 
hydrodynamic parameters is not changed by 
the Schmidt numbers, while in the case of a tube 
(equation (40) is not valid in this case) there 
exists such an interaction. For a tube it was 
shown previously [IO] that 

k fiz -=t: 
%I 1 + G [&f/2>] (SC' - 1) . W) 

As was stressed above, the present analysis is 

valid only in the vicinity of the separation point. 
For a more complete analysis of the separated 
turbulent flows it is, however, necessary to use 
for z equation (3) and at least a two-dimensional 
description of the fully turbulent field. 
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APPENDIX 

Equation (6) must be solved for the boundary conditions 
(7)-(9). The similarity variable 

allows to transform equation (6) into 

d2c a y Ot2 

D@ + (1 + n)n 2 0 

S”+Zds dc ---0, 
dx dp 

(A.2) 

The assumption that c = +) is compatible with equation 
(A.2) if 

(A.3) 

It is convenient to select for the constant /? the value /I = n + 
3. From equation (A.3) one obtains 

6 = (n + 3)2 (n + 1) q 

( 
(A.4) 

a 

Equation (A.2) becomes 

$ + (n + a$+$ = 0. (AS) 
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Integrating and taking into account the boundary conditions Since 
one gets 

iexo(-s”+‘)ds J 
m 

(A.7) 
0 

c-cci 6 -’ 

co-ci jexp(-s”+3)ds 
(A4 equation (A.6) leads to equation (10). 

TRANSPORT DE MASSE OU DE CHALEUR A PARTIR D’UNE FRONTIERE 
SOLIDE VERS UN FLUIDE TURBULENT 

R&uru&I_e probleme de transport de chaleur ou de masse a partir dune front&e solide est trait& en 
divisant I’ecoulement turbulent en deux regions Pour la region dans le voisinage immediat de la paroi, 
on emploie un mod& physique propod auparavant par I’auteur. Dans le modele, on sonsidere le mouve- 
ment turbulent comme une succession k long de la paroi de mouvements laminaires quasi-permanents, 
chacun ayant un faible parcours A la difference du traitement pr&cctdenf on tient compte dans le traitement 
actuel, de differentes formes de d’ependances de la contrainte de cisaillement en fonction de la distance y 
a la paroi Pour une contrainte de cisaillement constante, on obtient le cas du mouvement turbulent dans 
un tube, tandis que, pour une contrainte de cisaillement proportionnelle a y, on obtient celui des Ccoulements 
turbulents dtcollb prb du point de d&collement Pour la region entierement turbulents, I’tquation de 
Prandtl pour I’tnergie cinetique turbulente est employee et, en se basant sur elle, on obtient une equation 
pour le coefficient de diffusion turbulent et pour le flux de transport de masse. L’bquation pour I’energie 
cinetique turbulente a permis de proposer un processus pour obtenir des informations concernant la 
longueur x,, du parcours laminaire La conclusion principale est que la forme de dependanoe de la contrainte 
de cisaillement en fonction de la distance a la paroi a une grande influence sur la maniexe selon laquelle le 
coefficient de transport de masse depend du coefficient de diffusion, de la viscosit6 et de la vitesse du fluide. 

STOFF- ODER WARMEUBERTRAGUNG VON EINER FESTEN GRENZFLACHE 
AN EINE TURBULENTE FLUSSIGKEIT 

Zuaatutuenfaaauug-Das Problem der turbulenten Warme- oder Stoffiibertragung von einer festen 
GrenzflSiche wird durch Aufteilung der turbulenten Stromung in zwei Bereiche behandelt. Fiir den 
Bereich in unmittelbarer N&he der Wand verwendet man em physikalisches Modell, das vor kurzem vom 
Autor vorgeschlagen wurde. Bei dem Model1 betrachtet man die turbulente Bewegung als einer 
Aufeinanderfolge quasistationiirer laminarer Bewegungen entlang der Wand, deren jede einen kurzen 
Weg zurticklegt. Im Vergleich mit der vorausgehenden Behandlung zieht man bei der gegenwgrtigen 
verschiedene Formen der AbhLngigkeit der Schubspannung vom Wandabstand y in Betracht. Bei 
konstanter Schubspannung erhiilt man den Fall der turbulenten Bewegung in einem Rohr, fiir eine 
Schubspannung proportional zu y jenen turbulenter abgeliister Strijmungen nahe dem Abliisepunkt. 
Fiir den voll turbulenten Bereich wird Prandtl’s Gleichung fiir die turbulente kinetische Energie benutzt. 
Auf Ihrer Grundlage erhLlt man eine Gleichung fiir den turbulenten Diffusionskoeffiienten und fiir den 
Stofftibertragungstrom. Die Gleichung fti die turbulente kinetische Energie erlaubt es, ein Verfahren 
vorzuschlagen, urn eine Auskunft beziiglich der Lange x0 des laminaren Weges zu erhalten. Die 
hauptsachliche Schlussfolgerung ist, dass die Vorm der Abh@igkeit der Schubspannung vom 
Wandabstand einen grossen Einfluss auf die Art hat, wie der Stoffiibertragungskoeffizient vom 

Diffusionskoeffizienten, der Ziihigkeit und der Geschwindigkeit der Fhissigkeit abhlngt. 

TEIIJIO-II MACCOOEMEH MEXAY TBEPAOH IPaHHHEH II 
TYPEYJIEHTHbIM IIOTOIEOM XEBAKOCTH 

AuuoraRurr-3a~asa 0 nepeuoce renna (uaccbr) c rn&pfiot4 nosepxuocru paccnmrprrsaercfl c 
HOMOmbiO pa3AeJI3HHH Typ6yXeHTHOrO TBueHAR Ha ABe 3OHbI. AnH 30HbI B HeHOCpt?BCTBeHHOH 
~BH~ocTH OT cTeHKH Hcnonb3yeTcH Honenb, paHee Hpe~noHteKHaH aBTopoH. B HoBenu 
Typ6yBeHTHOe ABH%?HHe paCCMaTpHBaeTCK KaK HenpepbtBHbtti pHn KBa3HCTaHHOHapHbIX 
JIaHHH3pHbIX TeHeHHH BHOHb CTeHKH, HpHYi$l KamAOe 113 HHX HHeeT CBO& eBpeHR H(H3HItB. no 
Cp3BHeHHtO C HpeJI,bt~ymHMH TpaKTOBKaMH B HaCTOJHlreH u~HIHlIMaIOTCR BO BHIIMaHIIe +Oplrlbt 
DaBHCMMOCTH CRBH,‘OBOrO HiXIpRHtt?HIiR OT pS.XTORHHR J’ (;TeHKII. HattBeHo, ‘IT0 BJIH CJty’IaK 
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~OCTORHHO~O CABM~OBOF~ HanpmKeHufi paccMaTpuBaemafl tdoaenb CooTBeTcTByeT TypciyneH- 

THUMP TeqeHum B Tpy6e, Torga KaK nnfl c$(BUrOBOrO Hanpsimemfl, nponopqIIoHanb HOBO 

paCCTORHul0 y,Te'IeHue UMeeT BufiTyp6yJIeHTHblX OTpblBHbIX nOTOKOB BO3JIe TO'SKII OTpblBa. 

&'IH o6nacTu nOJIHOCTbI0 pa3BUTOl'O Typ6yJfeHTHOrO Te=leHuR uCnOJIb3yeTCH ypaBHeHlle AJIH 

Typ6yJleHTHOi KUHeTWIeCKO#3Hepl'uM flpaHJJTJIH,Il HaerO OCHOBenOJIyYeHO ypaBHeHIle~JIfl 

KO3~~ul(ueHTa Typ6yJIeHTHOt nU$I+y3UU U KOTOKa IIepeHOCa MaCCbI. YpaBHeHIle Typ(iyneH- 

THOt KUHeTUYeCK0i-i 3HepI'UU n03BOJlUJlO IIpeJ(JIOmIlTb MeTo;r nonyseHm nw$opnIa~m 

oTHocuTenbH0 A~UH~I Xona~uHapHot o6nacTu. OCHOBHO~~ B~IBO~CCOCTOIIT B TOM,~TO @op~la 

3aBUCUMOCTU CRBUI'OBOrO HanpRmeHUfi OT paCCTORHIWI JJO CTeHKII OKa3bIBaeT 6osbiuoe 

BJIURHUe Ha BUA 3aBUCUMOCTU KO3i#I@UL(UeHT3 Tennoo6weKa OT KO3~IjUI~IleHTa ~11~$1\'31111, 

BfiIaKOCTU U CKOpOCTU ~II~KOCTII. 


