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Abstract—The probiem of turbulent heat or mass transfer from a solid boundary is treated by dividing
the turbulent flow into two regions. For the region in the immediate vicinity of the wall one uses a physical
model proposed previously by the author. In the model one considers the turbulent motion as a succession
along the wall of quasi-steady laminar motions each of them having a short path. Compared to the preceding
treatment, in the present one takes into account various forms of dependence of the shear stress on the
distance y to the wall. For a constant shear stress the case of the turbulent motion in a pipe is obtained,
while for a shear stress proportional to y that of turbulent separated flows near the separation point.
For the fully turbulent region, Prandtl’s equation for the turbulent kinetic energy is used and on its basis one
obtains an equation for the turbulent diffusion coefficient and for the mass transfer flux. The equation
for the turbulent kinetic energy has allowed to propose a procedure for obtaining information concerning
the length x,, of the laminar path. The main conclusion is t::at the form of dependence of the shear stress
on the distance from the wall has a great influence on the manner in which the mass transfer coefficient
depends on the diffusion coefficient, viscosity and fluid viscosity.

NOMENCLATURE P, pressure;

a, universal constant; u, x component of velocity;
A, quantity defined by equation (25); Upy average velocity in a tube;
b, universal constant; U, velocity at infinite of a fluid moving
B, quantity defined by equation (38); around a sphere or cylinder;
¢, concentration; u, x component of velocity fluctua-
Cir concentration at the interface; tion;
Co» concentration for y = y,; v, y component of velocity fluctua-
Coer concentration in the bulk of the tion;

fluid; w, z component of velocity fluctua-
d, pipe diameter; - tion;
D, diffusion coefficient; w)?, (_17)7, W, temporal average of (u)?,
e,e;, e, universal constants; (v')? and (W')?;
E, kinetic turbulent energy, equation X, distance along the wall;

@2n; X0 the length of a laminar path;
E,, value of E for y = y,; ¥ distance from the wall;
£ friction factor; Yo thickness of the layer from the
G, universal constant, equation (46); immediate vicinity of the wall;
k, mass-transfer coefficient; Y1 distance at which ¢ = c,,;
n, exponent ; a, quantity defined by equations (3)
N, mass flux; or (4);
N, average value of N over the laminar B, proportionality constant

path of length x,; equal to 3 + n;
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r, gamma function;

0, length in the similarity variable p,
equation (A.1); and given by (A.4);

&, turbulent diffusion coefficient ;

1, dynamic viscosity ;

i, similarity variable, defined by equa-
tion (A.1) and given by equation
(11);

v, kinematic viscosity;

T, shear stress;

T value of 7 at the wall;

P, fluid density;

Re, u,d/v;

Se, v/D.

INTRODUCTION

SOME years ago a physical model was developed
by the author for representing the turbulent
heat or mass transfer near a solid boundary for
large Schmidt or Prandtl numbers [1, 2]
Owing to some assumptions, that treatment is
however valid only if the shear stress near the
boundary is practically independent of the
distance y from the solid surface, condition ful-
filled, for instance, for the flow in a tube. The
model was extended recently to turbulent
separated flows [3] In these cases the shear
stress near the solid boundary is no longer
independent of y. Spalding’s paper [4] con-
cerning the heat transfer from turbulent sepa-
rated flows has stimulated us to look for a more
unitary analysis of the cases treated in [1] and
[3], and has also provided means for solving the
problem for a larger range of Schmidt or
Prandtl numbers. It is the aim of the present
paper to present the more general approach of
the turbulent heat or mass transfer from a solid
boundary for a large range of Schmidt or
Prandtl numbers. In the analysis, the turbulent
flow near a solid wall will be divided into two
regions. One of them in the immediate vicinity
of the wall in which the molecular diffusion
coefficient and the molecular viscosity are acting
and the other one, the fully turbulent region, in
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which the effect of the molecular physical
quantities is negligible. For the region in the
immediate vicinity of the wall the author’s
physical model will be used, while for the fully
turbulent region the equation written by Prandtl
[5] for the turbulent kinetic energy and applied
by Spalding to turbulent separated flows [4].
Compared to the previous models [1,3], the
present one leads to a more general method
owing both to the manner in which one takes
into account the dependence of the shear stress
on the distance to the wall and to the manner
in which equations are established for some
hydrodynamic quantities introduced by the
model. The use of Prandtl’s equation for the
turbulent kinetic energy in the fully turbulent
region permits to obtain equations for the mass
or heat-transfer coefficient valid for a large
range of Schmidt or Prandtl numbers.

THE REGION IN THE IMMEDIATE VICINITY OF
THE WALL

In the immediate vicinity of the wall it will be
considered that the turbulent motion is com-
posed of a succession of laminar motions along
the wall, each of them having a short path of
length x, [ 1, 2]. Owing to turbulent fluctuations,
elements of liquid brought to the wall, are
moving along the wall in short paths of length x,
and are dissolving into the bulk of the fluid,
being replaced by other elements of fluid and
so on. Arguments in support of this model based
especially on visual observations, but also on an
analysis of the turbulent diffusion coefficient
concept [6], were adduced in previous papers
and will not be repeated here. The equations of
motion and the convective diffusion equation
valid for each path are those for the corres-
ponding quasi-steady laminar motion. For
simplicity a one-dimensional distribution will
be taken for the velocity field in each path. This
field will be obtained from the equation

T = r]a; (1)
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For the turbulent motion in a tube

@

near the wall, while for turbulent separated
flows the shear stress is small at the wall near
the separation point (being nil at this point) and
depends on the distance y from the wall. In the
last case it is possible to write

T & 7o = constant

3)

The validity conditions of (3) are discussed by
Townsend [7]. The quantity « may be taken
approximately equal to dP/dx. The shear stress
7o at the wall is positive before the separation
point and negative behind the separation point.
In what follows, for simplicity, only the process
taking place in a region very near to the separa-
tion point where 7, &~ 0 will be considered.

Owing to the fact that the cases in which t has
the form

T=71 + yo.

=0 4)

may be solved easily and to the fact that (4)
includes both the case of a tube (n = 0) and that
of separated flows at the separation point
(n = 1), the treatment will be based on it.

Introducing (4) into (1) and integrating one
gets

o

W=t

n(l + n) ©)

The convective diffusion equation valid in each
path takes the form

2
n)n ax 6y
If the assumption is made that the thickness of
the fluid elements moving along the wall (and
in contact with it) a distance equal to x,, is larger
than the depths of penetration by diffusion for
all values of x < x,, one may approximate the
distribution of concentration by the one valid
for a semi-infinite fluid. Consequently equation
(6) must be solved for the boundary conditions

yn+l

c=¢ for y=0 )
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c=c, for x=0 (8)
c=cq for y— . 9)

The solution of equation (6) for the boundary
conditions (7)}9) has the form (see appendix)

fexp(—s"”) ds

C - C 0
L= 10
CO - Ci n + 4 ( )
n+3
where
— y
/1 = . L (11)
(Q"_ + 3)2:1 +1) n) TEIIEE

For the mass flux one obtains

Ne—D dc _ Dlc; — ¢p)
ayyo (n+4)

r{——=

n+3

R

J(Dx) n+3

12
<(n + 3)2 mn+1) r]) (12)
and for the average mass flux defined over the
path of length x,

n+2

n+3 Dn+s (6 — ¢p)
n+2 I,(n+4>
n+3
+3xon+3

o \ 1 l
((n +3 @+ Dy

The length x, of the path being short one may
consider N as a quasi-local quantity.

For large values of Schmidt number the
concentration ¢, is practically equal to that of
the bulk and for the mass-transfer coefficient,
defined by

N =

(13)

k = N/f(c; — cp), (14)
one obtains
n+2
K — n+3 D a+3
n+2 n+4
d n+3
« o1
n+3 n+3
x<(n+3)2(n+1)r,> Xor+% (13)
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The transfer coefficient may be also considered
a quasi-local quantity.

The length x, of the laminar path may be
obtained by means of dimensional considera-
tions. For a tube one considers that the state
of turbulence near the boundary is characterized
by 14, p and 5. Extending this type of reasoning
to the present case one may say that the state of
turbulence is characterized by o, p and #:
Dimensional considerations lead to

1 1
X O E)‘:rzv Py
n

Consequently

(16)

n+2 1 n+4

N Dn+3<%> mv "+ +3) (ci _ co) (17)

and the mass-transfer coefficient for large
Schmidt numbers is given by

n+2 1 n+4

e FHE S

For n = 0, equation (18) leads to that obtained
in [1], and for n = 1 to that obtained in [3].
One may stress the fact that a similar equation
may be obtained by means of the turbulent
diffusion coefficient concept if the procedure
from [3] is used.

The dimensional analysis has led to an equa-
tion for x, owing to the fact that the number of
physical quantities implied is four (xq, a, p, ).
Such considerations cannot lead however to
information about the dependence of the
proportionality constant from (16) on n, and to
equations for x, corresponding to more compli-
cated relations between t and y, as is for instance
that given by equation (3). A more satisfactory
procedure for obtaining an equation for the
length x, of the laminar path is therefore needed.
An analysis of the problem in terms of more
fundamental (primary) quantities may be useful
in this respect. The eddies having as a conse-
quence the succession of short laminar motions
along the wall are generated in the vicinity of
the boundary between the two considered
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regions. The intensity of the eddies may be
characterized by their kinetic energy E, at this
point,. It is natural to consider that x, depends on
E, and on the physical constants n and p.
Dimensional considerations permit us to write
v

Xo = €4 E—é (19)
where e, is an universal constant.

Though equation (19) was also deduced by
dimensional reasoning, it is more general than
(16) since it does not contain particular quan-
tities specific to a certain case. It iss however,
necessary to express, for each situation, E, as a
function of the corresponding particular quan-
tities. It will be shown in the following section
that for the fully turbulent region it is possible to
establish a differential equation for the depend-
ence of E on the distance y, equation in which the
shear stress t appears too. For each type of
dependence of © on y results a dependence of E
on y. Since for the value of y at the boundary of
the two regions dimensional considerations
lead to

€,V

Yo = (20)

the above mentioned equation E = E(y) permits
us to establish an equation for E,,.

For instance, for © = ay", one obtains (see
equation (32) from the following section)

a/p

BICTEE ) A
Because
o/p
BT L O
using equation (20), one gets
R e T S 1 A

Consequently
1 2 1

ela —3bn?)] 2@¥m Tyn/o\NT¥n
el[( 2 3] v (;) . (24
2+n

Xg =
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Compared to equation (16), equation (24) takes
into account the dependence on the exponent
n too.

For the average mass flux taken over the
laminar path of length x,, one obtains

n+3
n+2

H
e7%3 [ela — 3bn?)]) Transy
1)( 3)2]7;-1!—3 *m-“S-)’;—(rTZ)I‘n—*_‘i
[(n+Dn+ e, s
n42 1
x D’T% LA M
P

n+2 n+4d

1
_A()n+2Dx+3v TEEAEEI (¢; — cp), (25)
4

N=

n+4
(n+2)n+3) x (ci — CO)

where the dimensionless quantity A is a function
of the exponent n.

The mass-transfer coefficient at large Schmidt
numbers is therefore given by

1 n+d ne2
k=4 (E)Wv'm D3 (26)
P
THE FULLY TURBULENT REGION

The method of analysis which will be used in
the following was developed by Prandtl [S] and
was applied recently by Spalding [4] to turbu-
lent separated flows. As in Spalding’s treatment,
for the sake of simplicity, a one-dimensional
equation will be used for the description of
turbulence in this region. This is a rough
approximation for turbulent separated flows.
Owing to the dependence of 1, and o on x, it
must be described by at least a two-dimensional
equation. The one dimensional approximation
is probably satisfactory in a small zone near the
separation point (where 7, & 0 and o is practic-
ally constant). This is the only zone considered
in the present paper.

The main quantity appearing in Prandtl’s
equation [5] is the turbulent kinetic energy E

E =3[0 + )Y + W)} 2n
An equation for E results by equating the rate

of dissipation per unit volume of the turbulent
energy with the sum of the variation of the
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diffusion flux of turbulent energy and of the rate
of generation per unit volume of turbulent
energy.

Expressions for the rate of dissipation per unit
volume and for the turbulent diffusion coefficient
g are obtained by means of dimensional analysis:

e . apE?
rate of dissipation per unit volume = T (28a)

e =eEty, (28b)

a and e being universal constants.

Since the rate of generation is given by
t du/dy, while the variation of the diffusion flux
of the turbulent energy by bp d/dy (E*y dE/dy)

one gets
aB* d ( dE) 7 du
——b— ———=0. (29
y dy o dy/ pdy @)
Eliminating du/dy by means of the equation
4 du
— = eEty— 30
p s (30)
and using equation (4) for 7/p it results
akE? ,dE aty?n
g ) - o @

The solution of equation (31) which satisfies the
boundary condition

E->Q
has the form

for y=0

a/p .
" [da—Fn)TF
Consequently the turbulent diffusion coefficient
is given by

(32

(a/p)?

=T b’

For the mass flux in the fully turbulent region
one may write

g (33)

= ~ & 34
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By integration one gets

Co — Cm _ 2[ela — 3bn?)]*
N~ ne(a/p)*

x(l -——-1-ﬂ for n+#£0. (35)
Yo2 ¥i

Considering y, sufficiently large and n not too
near to zero equation (35) becomes

Co — Cp
N

It must be stressed that equation (36) is not valid
for turbulent flow in a pipe (n = 0). This case
was examined previously [2, 10].

For the thickness y, of the region from the
immediate vicinity of the wall, equation (20)
together with the equation

z
R ITEG

[e(a —3bn

= 2 [a~ 3P @)y (36

which results from (32), lead to

Yo = “Waﬂmm%3“<m

Consequently the mass flux in the fully turbulent
region is given by the equation:

P

2(2+n)
N = ——62

[e(a — 3 bn?)]

P e L
xv2+n<;)2+n(co__ m)_____Bv2+n

1
a J—
X (;)"“(Co — Cm),

where the dimensionless quaniity B depends
onn.

(38)

THE MASS-TRANSFER COEFFICIENT
Equations (25) and (38) may be written under
the form

E. RUCKENSTEIN

N— 4 —Cg
n4 2 i n+4 N
1 n+3 o a+2 n+2Bn+3
—D - v
4 P
Co"‘cm 1

a\ 1 3
X(p)n+2 2+n(C —¢,).

The mass-transfer coefficient is thus given by

(39)

k= : (40)

Equation (40) represents the main result of the
present analysis.

DISCUSSION

Two equations have been established for the
mass-transfer coefficient. One of them, equation
(26), for large Schmidt numbers and the other
one, equation (40), for a larger range of Schmidt
numbers. The fact must be, however, stressed
that the first equation is valid for any value of
n = 0, while the second only for those values
which are not near zero. The first comment
which may be made with respect to the men-
tioned equations is that the manner in which the
shear stress depends on y has a great effect on
the dependence of the mass-transfer coefficient
on the diffusion coefficient, viscosity and velo-
city. For large Schmidt numbers

koc Dry2[Z :
p

ko DYy~ (E)i
p

forn=0 (41)

forn=1 (42)
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~02 2

Because for a pipe to/p ¢ Re™ %% uZ, equation

(41) leads to
koc D¥v *Re %ly, 43)

Considering that in the vicinity of the separation
point

forn = 0.

P
axu,

equation (42) becomes
koc DYy~ & Ut (44)

A comparison between equation (43) and
(44) shows that the exponent of the diffusion
coefficient is % in the first case and 2 in the
second and that the exponent of velocity is 09
in the first case and % in the second. The experi-
ments performed by Harriot and Hamilton [8]
for the dissolving of the wall of a pipe into the
turbulent liquid flowing inside the pipe and for a
large range of Schmidt number (between 4 x
10% up to 10°) lead to exponents very near to the
ones obtained above

k oc D0~654 U0~887 (45)

Richardson [9] studying the heat and mass
transfer in turbulent separated flows has ob-
tained experimentally a value of % for the
exponent of velocity. The same exponent, linked
however to the assumption that dp/dx oc U?,
appears in the present equation (44) too. Since
for a no detailed information exists, it is not yet
possible to compare in more details the obtained
equation with experiment.

As concerns the equation (40), valid for a
larger range of Prandtl number, it is of interest
to note that for n = 1 the dependence on the
hydrodynamic parameters is not changed by
the Schmidt numbers, while in the case of a tube
(equation (40) is not valid in this case) there
exists such an interaction. For a tube it was
shown previously [10] that

k e
w1+ GIJUDIEE -1

As was stressed above, the present analysis is

for n=1

(46)
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valid only in the vicinity of the separation point.
For a more complete analysis of the separated
turbulent flows it is, however, necessary to use
for T equation (3) and at least a two-dimensional
description of the fully turbulent field.
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APPENDIX

Equation (6) must be solved for the boundary conditions
{7)-(9). The similarity variable

Y
I e A~1
k=50 Al
allows to transform equation (6) into
d2c @ y\"+2 dé dc
D— —_— mt2 " . .
P T (5) Taa=t 42

The assumption that ¢ = (i) is compatible with equation
A2 if

o dé
6“+2*‘“ = D
A +nn dx p

(A3)

It is convenient to select for the constant § the value § = n +
3. From equation (A.3) one obtains

1 1
, S
5 ((n+ 3 (n + l)n)n+3(Dx3.+3

(A.4)
a
Equation (A.2) becomes
d%c ez d€
d—ﬂz+(n+3)u a;z(). (A5)
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Integrating and taking into account the boundary conditions Since
one gets

j exp(——s"”)ds=1"<ﬁ—)
0 n+3

m
a3
c—¢, j(;exp( "t ds

(A.6)

Co—¢C equation (A.6) leads to equation (10).

i ?exp(—s"”)ds
0

TRANSPORT DE MASSE OU DE CHALEUR A PARTIR D’UNE FRONTIERE
SOLIDE VERS UN FLUIDE TURBULENT

Résumé—Le probléme de transport de chaleur ou de masse & partir d’une frontiére solide est traité en
divisant I’écoulement turbulent en deux régions. Pour la région dans le voisinage immédiat de la paroi,
on emploie un modéle physique proposé auparavant par ’auteur. Dans le modéle, on sonsidére le mouve-
ment turbulent comme une succession le long de la paroi de mouvements laminaires quasi-permanents,
chacun ayant un faible parcours. A la différence du traitement précédent, on tient compte dans le traitement
actuel, de différentes formes de d’épendances de la contrainte de cisaillement en fonction de la distance y
a la paroi Pour une contrainte de cisaillement constante, on obtient le cas du mouvement turbulent dans
un tube, tandis que, pour une contrainte de cisaillement proportionnelle a y, on obtient celui des écoulements
turbulents décollés prés du point de décollement Pour la région entiérement turbulents, I’équation de
Prandtl pour ’énergie cinétique turbulente est employée et, en se basant sur elle, on obtient une équation
pour le coefficient de diffusion turbulent et pour le flux de transport de masse. L’équation pour I’énergie
cinétique turbulente a permis de proposer un processus pour obtenir des informations concernant la
longueur xq du parcours laminaire. La conclusion principale est que la forme de dépendance de la contrainte
de cisaillement en fonction de la distance 3 la paroi a une grande influence sur la maniére selon laquelle le
coefficient de transport de masse dépend du coeflicient de diffusion, de la viscosité et de la vitesse du fluide.

STOFF- ODER WARMEUBERTRAGUNG VON EINER FESTEN GRENZFLACHE
AN EINE TURBULENTE FLUSSIGKEIT

Zusammenfassung— Das Problem der turbulenten Wirme- oder Stoffilbertragung von einer festen
Grenzfliche wird durch Aufteilung der turbulenten Stromung in zwei Bereiche behandelt. Fiir den
Bereich in unmittelbarer Nahe der Wand verwendet man ein physikalisches Modell, das vor kurzem vom
Autor vorgeschlagen wurde. Bei dem Modell betrachtet man die turbulente Bewegung als einer
Aufeinanderfolge quasistationdrer laminarer Bewegungen entlang der Wand, deren jede einen kurzen
Weg zuriicklegt. Im Vergleich mit der vorausgehenden Behandlung zieht man bei der gegenwiértigen
verschiedene Formen der Abhingigkeit der Schubspannung vom Wandabstand y in Betracht. Bei
konstanter Schubspannung erhilt man den Fall der turbulenten Bewegung in einem Rohr, fiir eine
Schubspannung proportional zu y jenen turbulenter abgeldster Stromungen nahe dem Abldsepunkt.
Fiir den voll turbulenten Bereich wird Prandtl’s Gleichung fiir die turbulente kinetische Energie benutzt.
Auf Threr Grundlage erhilt man eine Gleichung fiir den turbulenten Diffusionskoeffizienten und fiir den
Stoffiibertragungstrom. Die Gleichung fiir die turbulente kinetische Energie erlaubt es, ein Verfahren
vorzuschlagen, um eine Auskunft beziiglich der Linge x, des laminaren Weges zu erhalten. Die
hauptsiichliche Schlussfolgerung ist, dass die Vorm der Abhéngigkeit der Schubspannung vom
Wandabstand einen grossen Einfluss auf die Art hat, wie der Stoffiibertragungskoeffizient vom
Diffusionskoeffizienten, der Zihigkeit und der Geschwindigkeit der Fliissigkeit abhéngt.

TEIIJIO—U MACCOOBMEH MEXY TBEPJON 'PAHUIEN N
TYPBYJIEHTHBIM [TOTOKOM HUIHKOCTH

AnpoTanna—3aj[aua 0 HepeHoce TemIa (Macchl) ¢ TBEP/Ol TOBEDPXHOCTH PACCMATPUBAETCA ¢
TIOMOIIBI0 pasfeeHusd TypGyIeHTHOrO Te4eH!A Ha iBe 30HBL. JIJIA 30HH B HENOCPENCTBEHHOT
6IM30CTH OT CTEHKH UCIOILAYETCA MOMEeNb, paHee NpeNJOAeHHAA aBTopoM. B momemn
Typ6ysenTHOe [BIDKEHHe DPACCMATPUBAEGTCA KAK HEMPEPHIBHHI pAJ KBa3HCTAUHOHAPHEIX
JIAMHHADHHIX TeYeHuiA BIOJIb CTEHKH, IPHIEM Kal0e 113 HIX UMeeT CBOE «BpeMA usHin. Ilo
CPABHEHHIO C TPEABULYIIMMII TPAKTOBKAMI B HACTOALIEIl IPHHIMAIOTCA BO BHHMAHIUE POPMBI
3aBMCHMOCTH CJBHI'OBOT'0 HANPSMEHUA OT PACCTOAHMA y ¢Tenku. Hailtmeno, uro gus ciyyas

(A7)
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TIOCTOAIHHOTO C/BUTOBOr0 HANDAMEHMA PACCMATPUBAEMasA MOJeJb COOTBETCTBYeT TypOyieH-
THOMY TeueHN10 B TpyOe, TOrga KaK [JIA CABMTOBOr0 HalpAMKeHMA, NPONOPLUHOHAIbL HOrO
PACCTOAHUIO Y, TeYeHye UMeeT BUJ, TYPOYJIEHTHHX OTPHIBHHX IOTOKOB BO3J7e TOYKH OTPHBA.
[ o61aCTH MOJHOCTEIO PA3BUTOTO TYPOYNEHTHOTO TeYeHUA MCIONb3YETCA ypaBHEHIe NJIA
TypOyneHTHO! KuHeTHdeckolt aHepruu IIpanaTas, u HA ero OCHOBE NOJYYEHO YpPaBHEHIE JJIA
KoapduuuenHTa TypOyneHTHOM nuddysHn M NMOTOKA NEpeHoCa MAcCCHL. Y paBHeHie TypOyieH-
THOW KHHETHYeCKO! DHEepPrUM MMO3BOJIMIIO NPEJJNOKHUTE MeTOX MOJYYeHHA HHQOpMai
OTHOCHTEeJbHO ANUHH Xo JaMUHAPHOMK o6nacrti. OCHOBHOIT BHIBOJ COCTONT B TOM, 4TO opma
33BUCHMOCTH CJBUTOBOr0 HANpAMKEHNA OT DACCTOAHMA RO CTEHKI OKAa3BBAET GOJbIIOE
BXNAHME HA BHJ 3aBUCHMOCTHM Koa@duuuenta TemsmoobmeHa or koagdimnenra auddyau,
BAIBKOCTH M CKOPOCTH »KHIKOCTIL.
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